The insect frontal ganglion and stomatogastric pattern generator networks.
نویسنده
چکیده
Insect neural networks have been widely and successfully employed as model systems in the study of the neural basis of behavior. The insect frontal ganglion is a principal part of the stomatogastric nervous system and is found in most insect orders. The frontal ganglion constitutes a major source of innervation to foregut muscles and plays a key role in the control of foregut movements. Following a brief description of the anatomy and development of the system in different insect groups, this review presents the current knowledge of the way neural networks in the insect frontal ganglion generate and control behavior. The frontal ganglion is instrumental in two distinct and fundamental insect behaviors: feeding and molting. Central pattern-generating circuit(s) within the frontal ganglion generates foregut rhythmic motor patterns. The frontal ganglion networks can be modulated in-vitro by several neuromodulators to generate a variety of motor outputs. Chemical modulation as well as sensory input from the gut and input from other neural centers enable the frontal ganglion to induce foregut rhythmic patterns under different physiological conditions. Frontal ganglion neurons themselves are also an important source of neurosecretion. The neurosecretory material from the frontal ganglion can control and modulate motor patterns of muscles of the alimentary canal. The current and potential future importance of the insect stomatogastric nervous system and frontal ganglion in the study of the neural mechanisms of behavior are discussed.
منابع مشابه
The locust frontal ganglion: a central pattern generator network controlling foregut rhythmic motor patterns.
The frontal ganglion (FG) is part of the insect stomatogastric nervous system and is found in most insect orders. Previous work has shown that in the desert locust, Schistocerca gregaria, the FG constitutes a major source of innervation to the foregut. In an in vitro preparation, isolated from all descending and sensory inputs, the FG spontaneously generated rhythmic multi-unit bursts of action...
متن کاملMechanisms for Neuromodulation of Biological Neural Networks
The pyloric Central Pattern Generator of the crustacean stomatogastric ganglion is a well-defined biological neural network. This 14-neuron network is modulated by many inputs. These inputs reconfigure the network to produce multiple output patterns by three simple mechanisms: 1) detennining which cells are active; 2) modulating the synaptic efficacy; 3) changing the intrinsic response properti...
متن کاملOptical Imaging of Neurons in the Crab Stomatogastric Ganglion with Voltage-sensitive Dyes
Voltage-sensitive dye imaging of neurons is a key methodology for the understanding of how neuronal networks are organised and how the simultaneous activity of participating neurons leads to the emergence of the integral functionality of the network. Here we present the methodology of application of this technique to identified pattern generating neurons in the crab stomatogastric ganglion. We ...
متن کاملOscillatorY Neural Networks: an Evolutionary Perspective
Motor patterns of the stomatogastric ganglion neurons of the shrimp Penaeus japonicus were studied in semi-isolated preparations of the complete stomatogastric nen伯us system. The oscillatory neural network can generate flexible motor patterns under the influence of extrinsic inputs from the higher center. Some neurons of the pyloric network are enhanced in their burstiness by excitatory synapti...
متن کاملGlutamate-gated inhibitory currents of central pattern generator neurons in the lobster stomatogastric ganglion.
Inhibitory glutamatergic neurotransmission is an elemental "building block" of the oscillatory networks within the crustacean stomatogastric ganglion (STG). This study constitutes the initial characterization of glutamatergic currents in isolated STG neurons in primary culture. Superfusion of 1 mM L-glutamate evoked a current response in 45 of 65 neurons examined. The evoked current incorporate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuro-Signals
دوره 13 1-2 شماره
صفحات -
تاریخ انتشار 2004